The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298173 Solution (a(n)) of the complementary equation in Comments. 2
 1, 4, 16, 50, 155, 468, 1410, 4234, 12709, 38132, 114404, 343218, 1029663, 3088997, 9267001, 27801012, 83403047, 250209151, 750627465, 2251882406, 6755647231, 20266941705, 60800825129, 182402475400, 547207426215, 1641622278659, 4924866835993, 14774600507994 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Define sequences a(n) and b(n) recursively, starting with a(0) = 1, b(0) = 2: b(n) = least new; a(n) = 3*a(n-1) + x(0)*b(n) + x(1)*b(n-1) + ... + x(n)b(0), where "least new k" means the least positive integer not yet placed, and x(k) = (-1)^k for k >= 0. *** It appears that a(n)/a(n-1) -> 3 and that {a(n) - 3*a(n-1), n >= 1} is unbounded. LINKS Table of n, a(n) for n=0..27. EXAMPLE b(1) = least not in {a(0),b(0)} = 3; a(1) = 3*a(0) + b(1) - b(0) = 3*1 + 3 - 2 = 4. MATHEMATICA mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); c = 3; a = {1}; b = {2}; x = {-1}; Do[AppendTo[b, mex[Flatten[{a, b}], 1]]; AppendTo[x, -Last[x]]; AppendTo[a, c Last[a] - (Reverse[x] b // Total)], {25}] Grid[{Join[{"n"}, Range[0, # - 1]], Join[{"a(n)"}, Take[a, #]], Join[{"b(n)"}, Take[b, #]], Join[{"x(n)"}, Take[-x, #]]}, Alignment -> ".", Dividers -> {{2 -> Red, -1 -> Blue}, {2 -> Red, -1 -> Blue}}] &[10] (* Peter J. C. Moses, May 10 2018 *) CROSSREFS Cf. A298741, A298877. Sequence in context: A227675 A345325 A203094 * A323932 A121184 A203840 Adjacent sequences: A298170 A298171 A298172 * A298174 A298175 A298176 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 12 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 4 22:06 EST 2024. Contains 370532 sequences. (Running on oeis4.)