login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049576
Primes p such that x^44 = 2 has a solution mod p.
2
2, 7, 31, 47, 71, 73, 79, 103, 113, 127, 151, 167, 191, 223, 233, 239, 257, 263, 271, 281, 311, 337, 359, 367, 383, 431, 439, 479, 487, 503, 577, 593, 599, 601, 607, 631, 647, 719, 743, 751, 823, 839, 863, 887, 911, 919, 937, 967, 983, 1031, 1033, 1039
OFFSET
1,1
COMMENTS
Complement of A059636 relative to A000040. - Vincenzo Librandi, Sep 14 2012
MATHEMATICA
ok[p_]:= Reduce[Mod[x^44 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^44 eq 2}]; // Vincenzo Librandi, Sep 14 2012
(PARI)
N=10^4; default(primelimit, N);
ok(p, r, k)={ return ( Mod(r, p)^((p-1)/gcd(k, p-1)) == 1 ); }
forprime(p=2, N, if (ok(p, 2, 44), print1(p, ", ")));
/* Joerg Arndt, Sep 21 2012 */
CROSSREFS
Sequence in context: A193353 A102158 A191073 * A298169 A213721 A102162
KEYWORD
nonn,easy
STATUS
approved