login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A049576
Primes p such that x^44 = 2 has a solution mod p.
2
2, 7, 31, 47, 71, 73, 79, 103, 113, 127, 151, 167, 191, 223, 233, 239, 257, 263, 271, 281, 311, 337, 359, 367, 383, 431, 439, 479, 487, 503, 577, 593, 599, 601, 607, 631, 647, 719, 743, 751, 823, 839, 863, 887, 911, 919, 937, 967, 983, 1031, 1033, 1039
OFFSET
1,1
COMMENTS
Complement of A059636 relative to A000040. - Vincenzo Librandi, Sep 14 2012
MATHEMATICA
ok[p_]:= Reduce[Mod[x^44 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^44 eq 2}]; // Vincenzo Librandi, Sep 14 2012
(PARI)
N=10^4; default(primelimit, N);
ok(p, r, k)={ return ( Mod(r, p)^((p-1)/gcd(k, p-1)) == 1 ); }
forprime(p=2, N, if (ok(p, 2, 44), print1(p, ", ")));
/* Joerg Arndt, Sep 21 2012 */
CROSSREFS
Sequence in context: A193353 A102158 A191073 * A298169 A213721 A102162
KEYWORD
nonn,easy
STATUS
approved