login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059636
Primes p such that x^44 = 2 has no solution mod p.
2
3, 5, 11, 13, 17, 19, 23, 29, 37, 41, 43, 53, 59, 61, 67, 83, 89, 97, 101, 107, 109, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 199, 211, 227, 229, 241, 251, 269, 277, 283, 293, 307, 313, 317, 331, 347, 349, 353, 373, 379, 389, 397, 401, 409, 419
OFFSET
1,1
COMMENTS
Complement of A049576 relative to A000040.
LINKS
MATHEMATICA
ok[p_] := Reduce[Mod[x^44 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[90]], ok] (* Vincenzo Librandi, Sep 21 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(500) | not exists{x: x in ResidueClassRing(p) | x^44 eq 2}]; // Vincenzo Librandi, Sep 21 2012
(PARI)
N=10^4; default(primelimit, N);
ok(p, r, k)={ return ( (p==r) || (Mod(r, p)^((p-1)/gcd(k, p-1))==1) ); }
forprime(p=2, N, if (! ok(p, 2, 44), print1(p, ", ")));
/* Joerg Arndt, Sep 21 2012 */
CROSSREFS
Sequence in context: A065396 A020620 A136056 * A087894 A245048 A338018
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Feb 02 2001
STATUS
approved