login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298271
Expansion of x/((1 - x)*(1 - 322*x + x^2)).
5
0, 1, 323, 104006, 33489610, 10783550415, 3472269744021, 1118060074024348, 360011871566096036, 115922704584208899245, 37326750864243699460855, 12019097855581887017496066, 3870112182746503375934272398, 1246164103746518505163818216091
OFFSET
0,3
FORMULA
G.f.: x/((1 - x)*(1 - 322*x + x^2)).
a(n) = a(-n-1) = 323*a(n-1) - 323*a(n-2) + a(n-3).
a(n) = (1/5760)*((2 + sqrt(5))^(4*n+2) + (2 + sqrt(5))^-(4*n+2) - 18).
a(n) = A298101(n) - A298101(n-1) + A298101(n-2) - A298101(n-3) + ..., hence:
a(n) + a(n-1) = A298101(n).
a(n) - a(n-1) = (1/144)*Fibonacci(12*n).
a(n) - a(n-2) = (1/8)*Fibonacci(12*n-6).
a(n)*a(n-2) = a(n-1)*(a(n-1) - 1).
Sum_{j>1} 1/a(j) = 161 - 72*sqrt(5) = A094214^12.
a(n) = A157459(n+1)/72. - Greg Dresden, Dec 02 2021
MATHEMATICA
CoefficientList[x/((1 - x) (1 - 322 x + x^2)) + O[x]^20, x]
PROG
(Sage)
gf = x/((1-x)*(1-322*x+x^2))
print(taylor(gf, x, 0, 20).list())
(Maxima) makelist(coeff(taylor(x/((1-x)*(1-322*x+x^2)), x, 0, n), x, n), n, 0, 20);
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -323, 323]^n*[0; 1; 323])[1, 1] \\ Charles R Greathouse IV, Jan 18 2018
(PARI) concat(0, Vec(x / ((1 - x)*(1 - 322*x + x^2)) + O(x^15))) \\ Colin Barker, Jan 19 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 16 2018
STATUS
approved