login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A298271 Expansion of x/((1 - x)*(1 - 322*x + x^2)). 2
0, 1, 323, 104006, 33489610, 10783550415, 3472269744021, 1118060074024348, 360011871566096036, 115922704584208899245, 37326750864243699460855, 12019097855581887017496066, 3870112182746503375934272398, 1246164103746518505163818216091 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Colin Barker, Table of n, a(n) for n = 0..399

Index entries for linear recurrences with constant coefficients, signature (323,-323,1).

FORMULA

G.f.: x/((1 - x)*(1 - 322*x + x^2)).

a(n) = a(-n-1) = 323*a(n-1) - 323*a(n-2) + a(n-3).

a(n) = (1/5760)*((2 + sqrt(5))^(4*n+2) + (2 + sqrt(5))^-(4*n+2) - 18).

a(n) = A298101(n) - A298101(n-1) + A298101(n-2) - A298101(n-3) + ..., hence:

a(n) + a(n-1) = A298101(n).

a(n) - a(n-1) = (1/144)*Fibonacci(12*n).

a(n) - a(n-2) = (1/8)*Fibonacci(12*n-6).

a(n)*a(n-2) = a(n-1)*(a(n-1) - 1).

Sum_{j>1} 1/a(j) = 161 - 72*sqrt(5) = A094214^12.

MATHEMATICA

CoefficientList[x/((1 - x) (1 - 322 x + x^2)) + O[x]^20, x]

PROG

(Sage)

gf = x/((1-x)*(1-322*x+x^2))

print(taylor(gf, x, 0, 20).list())

(Maxima) makelist(coeff(taylor(x/((1-x)*(1-322*x+x^2)), x, 0, n), x, n), n, 0, 20);

(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -323, 323]^n*[0; 1; 323])[1, 1] \\ Charles R Greathouse IV, Jan 18 2018

(PARI) concat(0, Vec(x / ((1 - x)*(1 - 322*x + x^2)) + O(x^15))) \\ Colin Barker, Jan 19 2018

CROSSREFS

Cf. A000045, A253368, A298101.

Sequence in context: A210056 A202984 A110709 * A006465 A272298 A088214

Adjacent sequences:  A298268 A298269 A298270 * A298272 A298273 A298274

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Jan 16 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 13:48 EDT 2020. Contains 335688 sequences. (Running on oeis4.)