login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A298251
The first of three consecutive primes the sum of which is equal to the sum of three consecutive pentagonal numbers.
8
199, 35951, 46351, 69221, 88427, 230291, 490481, 707573, 829883, 1088419, 1129693, 1258109, 1736101, 1918157, 1976243, 2456939, 2741159, 2753351, 2822881, 3249419, 4603351, 5121713, 5528623, 6186407, 6664429, 6945559, 6964949, 7094839, 7120963, 7147121
OFFSET
1,1
LINKS
EXAMPLE
199 is in the sequence because 199+211+223 (consecutive primes) = 633 = 176+210+247 (consecutive pentagonal numbers).
MAPLE
N:= 10^8: # to get all terms where the sums <= N
Res:= NULL:
mmax:= floor((sqrt(8*N-23)-5)/6):
M3:= map(t->9/2*t^2+15/2*t+6, [seq(seq(4*i+j, j=2..3), i=0..mmax/4)]):
for m in M3 do
r:= ceil((m-8)/3);
p1:= prevprime(r+1);
p2:= nextprime(p1);
p3:= nextprime(p2);
while p1+p2+p3 > m do
p3:= p2; p2:= p1; p1:= prevprime(p1);
od:
if p1+p2+p3 = m then
Res:= Res, p1
fi
od:
Res; # Robert Israel, Jan 16 2018
MATHEMATICA
Module[{nn=50000, pn}, pn=Total/@Partition[PolygonalNumber[5, Range[ Ceiling[ (1+Sqrt[1+24 Prime[nn]])/6]]], 3, 1]; Select[Partition[ Prime[ Range[ nn]], 3, 1], MemberQ[pn, Total[#]]&]][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 12 2020 *)
PROG
(PARI) L=List(); forprime(p=2, 8000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(72*t-207, &sq) && (sq-15)%18==0, u=(sq-15)\18; listput(L, p))); Vec(L)
KEYWORD
nonn
AUTHOR
Colin Barker, Jan 15 2018
STATUS
approved