login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297331
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of (theta_3(q^(1/2))^k + theta_4(q^(1/2))^k)/2.
1
1, 1, 0, 1, 0, 0, 1, 4, 2, 0, 1, 12, 4, 0, 0, 1, 24, 6, 0, 0, 0, 1, 40, 24, 24, 4, 0, 0, 1, 60, 90, 96, 12, 8, 0, 0, 1, 84, 252, 240, 24, 24, 0, 0, 0, 1, 112, 574, 544, 200, 144, 8, 0, 2, 0, 1, 144, 1136, 1288, 1020, 560, 96, 48, 4, 0, 0, 1, 180, 2034, 3136, 3444, 1560, 400, 192, 6, 4, 0, 0
OFFSET
0,8
LINKS
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 118.
FORMULA
G.f. of column k: (theta_3(q^(1/2))^k + theta_4(q^(1/2))^k)/2, where theta_() is the Jacobi theta function.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 4, 12, 24, 40, ...
0, 2, 4, 6, 24, 90, ...
0, 0, 0, 24, 96, 240, ...
0, 0, 4, 12, 24, 200, ...
0, 0, 8, 24, 144, 560, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[(EllipticTheta[3, 0, q^(1/2)]^k + EllipticTheta[4, 0, q^(1/2)]^k)/2, {q, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Dec 28 2017
STATUS
approved