OFFSET
0,8
LINKS
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 118.
FORMULA
G.f. of column k: (theta_3(q^(1/2))^k + theta_4(q^(1/2))^k)/2, where theta_() is the Jacobi theta function.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 4, 12, 24, 40, ...
0, 2, 4, 6, 24, 90, ...
0, 0, 0, 24, 96, 240, ...
0, 0, 4, 12, 24, 200, ...
0, 0, 8, 24, 144, 560, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[(EllipticTheta[3, 0, q^(1/2)]^k + EllipticTheta[4, 0, q^(1/2)]^k)/2, {q, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0..32 give A000007, A089798 (absolute values), A004018, A004015, A004011, A005930, A008428, A008429, A008430, A008431, A008432, A022042, A022043, A022044, A022045, A022046, A022047, A022048, A022049, A022050, A022051, A022052, A022053, A022054, A022055, A022056, A022057, A022058, A022059, A022060, A022061, A022062, A022063.
Main diagonal gives A303333.
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Dec 28 2017
STATUS
approved