login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126079
G.f.: (1-2*x)*sqrt(1-4*x).
4
1, -4, 2, 0, -2, -8, -28, -96, -330, -1144, -4004, -14144, -50388, -180880, -653752, -2377280, -8691930, -31935960, -117858900, -436698240, -1623971580, -6059188080, -22676052360, -85100059200, -320188972740, -1207569840048, -4564276213608, -17286920538496, -65597689543400
OFFSET
0,2
LINKS
FORMULA
From Emeric Deutsch, Mar 25 2007: (Start)
a(n) = binomial(2n,n) - 6*binomial(2n-2,n-1) + 8*binomial(2n-4,n-2).
a(n) = (3-n)*binomial(2n,n)/((2*n-3)*(2*n-1)). (End)
E.g.f.: 1 - 4*x + 2*x^2 - x^2*Q(0), where Q(k)= 1 - 2*x/(k+3 - (k+3)*(2*k+3)/(2*k+3 - (k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 29 2013
a(n) ~ -2^(2*n-2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
D-finite with recurrence: n*a(n) +2*(-3*n+5)*a(n-1) +4*(2*n-7)*a(n-2)=0. - R. J. Mathar, Jan 23 2020
MAPLE
a:=n->(3-n)*binomial(2*n, n)/(2*n-3)/(2*n-1): seq(a(n), n=0..30); # Emeric Deutsch, Mar 25 2007
A126079List := proc(m) local A, P, n; A := [1, -4, 2, 0]; P := [-2, 0];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
A := [op(A), P[-1]] od; A end: A126079List(27); # Peter Luschny, Mar 26 2022
MATHEMATICA
CoefficientList[Series[(1-2x)Sqrt[1-4x], {x, 0, 40}], x] (* Harvey P. Dale, Mar 28 2014 *)
PROG
(Magma) [(3-n)*Binomial(2*n, n)/((2*n-3)*(2*n-1)): n in [0..30]]; // Vincenzo Librandi, Mar 29 2014
CROSSREFS
Sequence in context: A297331 A028956 A129681 * A106220 A176066 A376742
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Mar 22 2007
STATUS
approved