OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The number of integer solutions (x, y) to 2*x^2 + x*y + 2*y^2 = n, discriminant -15. - Ray Chandler, Jul 12 2014
REFERENCES
R. Barman and N. D. Baruah, Theta function identities associated with Ramanujan's modular equations of degree 15, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), no. 3, 267-284. see p. 271, equ. (3.1)
LINKS
John Cannon, Table of n, a(n) for n = 0..5000
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(q^3) * phi(q^5) + 4 * q^2 * psi(q^6) * psi(q^10) in powers of q where phi(),psi() are Ramanujan theta functions. - Michael Somos, Feb 09 2006
Expansion of (phi(q^3) * phi(q^5) + phi(-q^3) * phi(-q^5)) / 2 in powers of q^4 where phi() is a Ramanujan theta function. - Michael Somos, Aug 01 2011
Expansion of (eta(q^3) * eta(q^5))^2 / (eta(q) * eta(q^15)) - (eta(q) * eta(q^15))^2 / (eta(q^3) * eta(q^5)) in powers of q. - Michael Somos, Aug 26 2006
G.f.: theta_3(q^3) * theta_3(q^5) + theta_2(q^3) * theta_2(q^5) . - Michael Somos, Feb 09 2006
a(n) = A192323(4*n).
EXAMPLE
G.f. = 1 + 4*q^4 + 2*q^6 + 2*q^10 + 8*q^16 + 6*q^24 + 4*q^34 + 4*q^36 + 6*q^40 + 4*q^46 + 2*q^54 + 4*q^60 + 12*q^64 + 8*q^76 + 2*q^90 + 4*q^94 + 10*q^96 + 4*q^100 + ...
G.f. = 1 + 4*x^2 + 2*x^3 + 2*x^5 + 8*x^8 + 6*x^12 + 4*x^17 + ... - Michael Somos, Jan 23 2023
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3] EllipticTheta[ 3, 0, q^5], {q, 0, 4 n}]; (* Michael Somos, Aug 01 2011 *)
PROG
(PARI) {a(n) = if( n<1, n==0, qfrep([4, 1; 1, 4], n, 1)[n]*2)}; /* Michael Somos, Aug 26 2006 */
(PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -15, d) - kronecker( -3, d) * kronecker( 5, n/d)))}; /* Michael Somos, Aug 26 2006 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved