

A028955


Numbers represented by quadratic form with Gram matrix [ 4, 1; 1, 4 ] (divided by 2).


4



0, 2, 3, 5, 8, 12, 17, 18, 20, 23, 27, 30, 32, 38, 45, 47, 48, 50, 53, 57, 62, 68, 72, 75, 80, 83, 92, 93, 95, 98, 102, 107, 108, 113, 120, 122, 125, 128, 137, 138, 147, 152, 153, 155, 158, 162, 167, 170, 173, 180, 183, 188, 192, 197, 200, 207, 212, 218, 227, 228
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Numbers of the form 2*x^2 + x*y + 2*y^2, of discriminant 15.  N. J. A. Sloane, Jun 01 2014
8*a(n) is of the form z^2 + 15*y^2, where z = 4*x + y. [Bruno Berselli, Jul 12 2014]


LINKS

Table of n, a(n) for n=1..60.
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


FORMULA

a(x, y) = (4x^2 + 2xy + 4y^2)/2; x, y any integer.


EXAMPLE

32 is in the sequence because it can be written in the form 2*2^2+2*3+2*3^2, and hence 8*32 = 11^2+15*3^2.


CROSSREFS

Cf. A028927. For primes see A106859.
Sequence in context: A238548 A004170 A247116 * A246321 A104664 A022856
Adjacent sequences: A028952 A028953 A028954 * A028956 A028957 A028958


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Mar 29 2000


STATUS

approved



