login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028959
Theta series of quadratic form with Gram matrix [ 2, 1; 1, 12 ].
11
1, 2, 0, 0, 2, 0, 4, 0, 4, 2, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 2, 4, 2, 4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 4, 0, 4, 0, 0, 0, 4, 4, 0, 0, 4, 0, 6, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 4, 0, 0, 2, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 4, 4, 0, 8, 0, 0
OFFSET
0,2
COMMENTS
theta[2,1;1,2d](z)=theta_3(z)*theta_3((4d-1)z)+theta_2(z)*theta_2((4d-1)z), generalizing the formula for theta(A_2), which is the case d=1 - Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 16 2000.
The number of integer solutions (x, y) to x^2 + x*y + 6*y^2 = n, discriminant -23. - Ray Chandler, Jul 12 2014
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
Köklüce, Bülent. "Cusp forms in S_6 (Gamma_ 0(23)), S_8 (Gamma_0 (23)) and the number of representations of numbers by some quadratic forms in 12 and 16 variables." The Ramanujan Journal 34.2 (2014): 187-208. See F_1, p. 195.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x) * phi(x^23) + 4*x^6 * psi(x^2) * psi(x^46) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Mar 28 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (23 t)) = 23^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Mar 28 2015
G.f.: (theta_3(z)*theta_3(23z) + theta_2(z)*theta_2(23z)).
EXAMPLE
G.f. = 1 + 2*x + 2*x^4 + 4*x^6 + 4*x^8 + 2*x^9 + 4*x^12 + 2*x^16 + 4*x^18 + ...
G.f. = 1 + 2*q^2 + 2*q^8 + 4*q^12 + 4*q^16 + 2*q^18 + 4*q^24 + 2*q^32 + 4*q^36 + 2*q^46 + 4*q^48 + 2*q^50 + 4*q^52 + 4*q^54 + 4*q^64 + 6*q^72 + 4*q^78 + 8*q^96 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^23] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^23], {x, 0, n}]; (* Michael Somos, Mar 28 2015 *)
CROSSREFS
Cf. A028958.
Sequence in context: A263146 A365047 A361015 * A317642 A258762 A079181
KEYWORD
nonn
AUTHOR
STATUS
approved