OFFSET
0,2
COMMENTS
theta[2,1;1,2d](z)=theta_3(z)*theta_3((4d-1)z)+theta_2(z)*theta_2((4d-1)z), generalizing the formula for theta(A_2), which is the case d=1 - Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 16 2000.
The number of integer solutions (x, y) to x^2 + x*y + 6*y^2 = n, discriminant -23. - Ray Chandler, Jul 12 2014
REFERENCES
Köklüce, Bülent. "Cusp forms in S_6 (Gamma_ 0(23)), S_8 (Gamma_0 (23)) and the number of representations of numbers by some quadratic forms in 12 and 16 variables." The Ramanujan Journal 34.2 (2014): 187-208. See F_1, p. 195.
LINKS
John Cannon, Table of n, a(n) for n = 0..5000
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x) * phi(x^23) + 4*x^6 * psi(x^2) * psi(x^46) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Mar 28 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (23 t)) = 23^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Mar 28 2015
G.f.: (theta_3(z)*theta_3(23z) + theta_2(z)*theta_2(23z)).
EXAMPLE
G.f. = 1 + 2*x + 2*x^4 + 4*x^6 + 4*x^8 + 2*x^9 + 4*x^12 + 2*x^16 + 4*x^18 + ...
G.f. = 1 + 2*q^2 + 2*q^8 + 4*q^12 + 4*q^16 + 2*q^18 + 4*q^24 + 2*q^32 + 4*q^36 + 2*q^46 + 4*q^48 + 2*q^50 + 4*q^52 + 4*q^54 + 4*q^64 + 6*q^72 + 4*q^78 + 8*q^96 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^23] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^23], {x, 0, n}]; (* Michael Somos, Mar 28 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved