login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303333
a(n) = [x^n] (theta_3(x^(1/2))^n + theta_4(x^(1/2))^n)/2, where theta_3() and theta_4() are the Jacobi theta functions.
3
1, 0, 4, 24, 24, 560, 2080, 11088, 74864, 343536, 2050344, 11676280, 61903776, 363737712, 2022013760, 11335886864, 65187410400, 365627715968, 2085523894756, 11894205734280, 67517852274384, 386394626371680, 2205027379874400, 12602057718873040, 72195482578935488, 413235574714857360
OFFSET
0,3
LINKS
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 118.
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
a(n) = A297331(n,n).
a(n) ~ c * d^n / sqrt(n), where d = 5.84456473064455581274428417... and c = 0.14104739588693592503498... - Vaclav Kotesovec, Jun 26 2019
MATHEMATICA
Table[SeriesCoefficient[(EllipticTheta[3, 0, x^(1/2)]^n + EllipticTheta[4, 0, x^(1/2)]^n)/2, {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n, {x, 0, 2 n}], {n, 0, 25}]
Table[SeriesCoefficient[EllipticTheta[3, 0, Sqrt[x]]^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jun 26 2019 *)
CROSSREFS
Main diagonal of A297331.
Cf. A066535.
Sequence in context: A169688 A222595 A103225 * A324517 A370493 A137980
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 21 2018
STATUS
approved