The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005930 Theta series of D_5 lattice. (Formerly M5270) 3
 1, 40, 90, 240, 200, 560, 400, 800, 730, 1240, 752, 1840, 1200, 2000, 1600, 2720, 1480, 3680, 2250, 3280, 2800, 4320, 2800, 5920, 2960, 5240, 3760, 6720, 4000, 7920, 4800, 6720, 5850, 8960, 4320, 10720, 6200, 9840, 7600, 11040, 5872, 12960, 7520, 12400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700). REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 118. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS John Cannon, Table of n, a(n) for n = 0..5000 G. Nebe and N. J. A. Sloane, Home page for this lattice Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA G.f.: (theta_3(q^(1/2))^5+theta_4(q^(1/2))^5)/2 Expansion of ( phi(q)^5 + phi(-q)^5 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Sep 14 2007 G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 64 2^(1/2) (t/i)^(5/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A008422. EXAMPLE 1 + 40*q^2 + 90*q^4 + 240*q^6 + 200*q^8 + 560*q^10 + 400*q^12 + 800*q^14 + ... MATHEMATICA terms = 44; phi[q_] := EllipticTheta[3, 0, q]; s = (phi[q]^5 + phi[-q]^5)/2 + O[q]^(2 terms); DeleteCases[CoefficientList[s, q], 0][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *) PROG (PARI) {a(n)=if(n<0, 0, n*=2; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n))^5, n))} /* Michael Somos, Nov 03 2006 */ CROSSREFS A000132(2n) = a(n). A008422 gives dual lattice. Sequence in context: A044178 A044559 A092613 * A261933 A036194 A023695 Adjacent sequences:  A005927 A005928 A005929 * A005931 A005932 A005933 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 12:38 EST 2021. Contains 349563 sequences. (Running on oeis4.)