OFFSET
0,5
COMMENTS
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120, Eq. 96.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..800
G. Nebe and N. J. A. Sloane, Home page for this lattice
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Theta series in terms of Jacobi theta series: (theta_2)^5 + (theta_3)^5.
Expansion of phi(q^4)^5 + ( 2 * q * psi(q^8) )^5 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Sep 17 2007
MATHEMATICA
terms = 78; phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q])*InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, q^(1/2)]; s = phi[q^4]^5 + (2*q*psi[q^8])^5 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
PROG
(PARI)
N=66; q='q+O('q^N);
T3(q) = eta(q^2)^5 / ( eta(q)^2 * eta(q^4)^2 );
T2(q) = eta(q^4)^2 / eta(q^2);
Vec( T3(q^4)^5 + (2 * q * T2(q^4))^5 )
\\ Joerg Arndt, Mar 30 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved