login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008425
Theta series of {D_6}* lattice.
3
1, 0, 12, 64, 60, 0, 160, 384, 252, 0, 312, 960, 544, 0, 960, 1664, 1020, 0, 876, 2880, 1560, 0, 2400, 4224, 2080, 0, 2040, 5248, 3264, 0, 4160, 7680, 4092, 0, 3480, 9984, 4380, 0, 7200, 10880, 6552, 0, 4608, 14784, 8160, 0, 10560, 17664, 8224, 0, 7812, 18560
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag New York, 1999, ISBN 978-1-4757-6568-7, p. 120.
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Apparently, a(n) = Sum_{d|n} d^2*(4*(Kronecker(-4,n/d) - Kronecker(-4,d))), n > 0. - Ralf Stephan, Dec 31 2014
Expansion of phi(x^2)^6 + 64 * x^3 * psi(x^4)^6 in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Dec 14 2016
G.f. is a period 1 Fourier series that satisfies f(-1 / (8 t)) = 16 (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A008428. - Michael Somos, Dec 14 2016
G.f.: theta_3(0, x^2)^6 + theta_2(0, x^2)^6.
EXAMPLE
G.f. = 1 + 12*x^2 + 64*x^3 + 60*x^4 + 160*x^6 + 384*x^7 + 252*x^8 + 312*x^10 + ...
MATHEMATICA
a[n_] := DivisorSum[n, #^2*(4*(KroneckerSymbol[-4, n/#]-KroneckerSymbol[-4, #]))&]; a[0]=1; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 06 2016, after Ralf Stephan *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^2]^6 + EllipticTheta[ 2, 0, x^2]^6, {x, 0, n}]; (* Michael Somos, Dec 14 2016 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 4 * sumdiv(n, d, d^2 * (kronecker(-4, n/d) - kronecker(-4, d))))}; /* Michael Somos, Dec 14 2016 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A)^5 / (eta(x^2 + A) * eta(x^8 + A))^2)^6 + 64 * x^3 * (eta(x^8 + A)^2/ eta(x^4 + A))^6, n))}; /* Michael Somos, Dec 14 2016 */
(PARI) {a(n) = my(G); if( n<0, 0, G = [2, 0, 0, 0, 0, 1; 0, 2, 0, 0, 0, 1; 0, 0, 2, 0, 0, 1; 0, 0, 0, 2, 0, 1; 0, 0, 0, 0, 2, 1; 1, 1, 1, 1, 1, 3]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, Dec 14 2016 */
(Magma) A := Basis( ModularForms( Gamma1(8), 3), 52); A[1] + 12*A[3] + 64*A[4] + 60*A[5] + 160*A[7]; /* Michael Somos, Dec 14 2016 */
CROSSREFS
Sequence in context: A012875 A275404 A162472 * A154507 A105916 A193872
KEYWORD
nonn,easy
STATUS
approved