login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287091
Expansion of Product_{k>=1} 1/(1 - x^((2*k-1)^3)).
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5
OFFSET
0,28
COMMENTS
Number of partitions of n into odd cubes.
In general, if m > 0 and g.f. = Product_{k>=1} 1/(1 - x^((2*k-1)^m)), then a(n) ~ exp((m+1) * (Gamma(1/m) * Zeta(1+1/m) / (2*m^2))^(m/(m+1)) * n^(1/(m+1))) * (Gamma(1/m) * Zeta(1+1/m))^(m/(2*(m+1))) / (sqrt(Pi*(m+1)) * 2^((1+m*(m+3))/(2*(m+1))) * m^((m-1)/(2*(m+1))) * n^((2*m+1)/(2*(m+1)))). - Vaclav Kotesovec, Sep 19 2017
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^((2*k-1)^3)).
a(n) ~ exp(2^(5/4) * (Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * (Gamma(1/3) * Zeta(4/3)/2)^(3/8) / (8 * 3^(1/4) * sqrt(Pi) * n^(7/8)). - Vaclav Kotesovec, Sep 18 2017
EXAMPLE
a(27) = 2 because we have [27] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
nmax = 110; CoefficientList[Series[Product[1/(1 - x^((2*k-1)^3)), {k, 1, Floor[nmax^(1/3)/2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 18 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 19 2017
STATUS
approved