login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287090
Expansion of Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)^2/4).
1
1, 1, 10, 46, 191, 740, 2912, 10941, 40345, 144703, 509693, 1761738, 5993434, 20076668, 66329914, 216307961, 696990583, 2220665661, 7000973556, 21853019072, 67575353580, 207111103623, 629440843762, 1897670845715, 5677604053474, 16863081962184, 49736388996376, 145714874857754
OFFSET
0,3
COMMENTS
Euler transform of A000537.
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)^2/4).
a(n) ~ exp(-Zeta(3) / (16*Pi^2) + 741*Zeta(5) / (1600*Pi^4) - 250047*Zeta(5)^3 / (5*Pi^14) + 10207918728 * Zeta(5)^5 / (5*Pi^24) + Zeta'(-3)/2 + (-7*(7/2)^(1/6) * Pi / (3200 * 3^(2/3)) + 9261 * 3^(1/3) * (7/2)^(1/6) * Zeta(5)^2 / (40*Pi^9) - 22754277 * 3^(1/3) * (7/2)^(1/6) * Zeta(5)^4 / (2*Pi^19)) * n^(1/6) + (-21 * 3^(2/3) * (7/2)^(1/3) * Zeta(5) / (20*Pi^4) + 31752 * 6^(2/3) * 7^(1/3) * Zeta(5)^3/Pi^14) * n^(1/3) + (sqrt(7/2)*Pi/60 - 567*sqrt(14)*Zeta(5)^2 / Pi^9) * sqrt(n) + 9 * 3^(1/3) * (7/2)^(2/3) * Zeta(5) / Pi^4 * n^(2/3) + 2 * (2/7)^(1/6) * 3^(2/3) * Pi/5 * n^(5/6)) / (2^(1321/1440) * 3^(479/720) * 7^(119/1440) * n^(839/1440) * Pi^(1/240)). - Vaclav Kotesovec, Nov 09 2017
MATHEMATICA
nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^(k^2 (k + 1)^2/4), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 19 2017
STATUS
approved