Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 19 2017 05:43:24
%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,
%T 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
%U 3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5
%N Expansion of Product_{k>=1} 1/(1 - x^((2*k-1)^3)).
%C Number of partitions of n into odd cubes.
%C In general, if m > 0 and g.f. = Product_{k>=1} 1/(1 - x^((2*k-1)^m)), then a(n) ~ exp((m+1) * (Gamma(1/m) * Zeta(1+1/m) / (2*m^2))^(m/(m+1)) * n^(1/(m+1))) * (Gamma(1/m) * Zeta(1+1/m))^(m/(2*(m+1))) / (sqrt(Pi*(m+1)) * 2^((1+m*(m+3))/(2*(m+1))) * m^((m-1)/(2*(m+1))) * n^((2*m+1)/(2*(m+1)))). - _Vaclav Kotesovec_, Sep 19 2017
%H Vaclav Kotesovec, <a href="/A287091/b287091.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F G.f.: Product_{k>=1} 1/(1 - x^((2*k-1)^3)).
%F a(n) ~ exp(2^(5/4) * (Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * (Gamma(1/3) * Zeta(4/3)/2)^(3/8) / (8 * 3^(1/4) * sqrt(Pi) * n^(7/8)). - _Vaclav Kotesovec_, Sep 18 2017
%e a(27) = 2 because we have [27] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
%t nmax = 110; CoefficientList[Series[Product[1/(1 - x^((2*k-1)^3)), {k, 1, Floor[nmax^(1/3)/2] + 1}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 18 2017 *)
%Y Cf. A000009 (m=1), A167661 (m=2).
%Y Cf. A003108, A016755, A259792, A279329, A280865.
%Y Cf. A001156, A046042, A292547.
%K nonn
%O 0,28
%A _Ilya Gutkovskiy_, May 19 2017