|
|
A087103
|
|
Smallest jumping champion for prime(n).
|
|
4
|
|
|
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 2, 2, 2, 2, 2, 6, 6, 6, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,3
|
|
COMMENTS
|
A number is called a jumping champion for n, if it is the most frequently occurring difference between consecutive primes <= n;
there are occasionally several jumping champions: see A087102; A087104(n) is the greatest jumping champion for prime(n).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 2..1001
A. Odlyzko, M. Rubinstein and M. Wolf, Jumping Champions
A. Odlyzko, M. Rubinstein and M. Wolf, Jumping Champions, Experimental Math., 8 (no. 2) (1999).
Eric Weisstein's World of Mathematics, Jumping Champion
|
|
MATHEMATICA
|
d=Table[0, {100}]; p=2; Table[q=NextPrime[p]; d[[q-p]]++; p=q; Position[d, Max[d]][[1, 1]], {1000}]
|
|
CROSSREFS
|
Cf. A001223, A005250.
Sequence in context: A185715 A111893 A121902 * A287091 A204551 A292563
Adjacent sequences: A087100 A087101 A087102 * A087104 A087105 A087106
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, Aug 10 2003
|
|
STATUS
|
approved
|
|
|
|