

A087104


Greatest jumping champion for prime(n).


4



1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 4, 4, 4, 2, 2, 2, 4, 4, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

A number is called a jumping champion for n, if it is the most frequently occurring difference between consecutive primes <= n;
there are occasionally several jumping champions: see A087102; A087103(n) is the smallest jumping champion for prime(n);
a(n)<=6 for small n, see Odlyzko et al. for primes>1.7*10^35.


LINKS

T. D. Noe, Table of n, a(n) for n = 2..1001
A. Odlyzko, M. Rubinstein and M. Wolf, Jumping Champions
A. Odlyzko, M. Rubinstein and M. Wolf, Jumping Champions, Experimental Math., 8 (no. 2) (1999).
Eric Weisstein's World of Mathematics, Jumping Champion


MATHEMATICA

d=Table[0, {100}]; p=2; Table[q=NextPrime[p]; d[[qp]]++; p=q; Position[d, Max[d]][[1, 1]], {1000}]


CROSSREFS

Cf. A001223, A005250.
Sequence in context: A086858 A111892 A108248 * A343743 A069926 A077429
Adjacent sequences: A087101 A087102 A087103 * A087105 A087106 A087107


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Aug 10 2003


STATUS

approved



