|
|
A087104
|
|
Greatest jumping champion for prime(n).
|
|
4
|
|
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 4, 4, 4, 2, 2, 2, 4, 4, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
COMMENTS
|
A number is called a jumping champion for n, if it is the most frequently occurring difference between consecutive primes <= n;
there are occasionally several jumping champions: see A087102; A087103(n) is the smallest jumping champion for prime(n);
a(n)<=6 for small n, see Odlyzko et al. for primes>1.7*10^35.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 2..1001
A. Odlyzko, M. Rubinstein and M. Wolf, Jumping Champions
A. Odlyzko, M. Rubinstein and M. Wolf, Jumping Champions, Experimental Math., 8 (no. 2) (1999).
Eric Weisstein's World of Mathematics, Jumping Champion
|
|
MATHEMATICA
|
d=Table[0, {100}]; p=2; Table[q=NextPrime[p]; d[[q-p]]++; p=q; Position[d, Max[d]][[-1, 1]], {1000}]
|
|
CROSSREFS
|
Cf. A001223, A005250.
Sequence in context: A086858 A111892 A108248 * A343743 A069926 A077429
Adjacent sequences: A087101 A087102 A087103 * A087105 A087106 A087107
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, Aug 10 2003
|
|
STATUS
|
approved
|
|
|
|