login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108248
a(n) = ceiling(n/24) + ceiling((n+1)/24).
0
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10
OFFSET
0,2
FORMULA
Euler transform of length 24 sequence [ 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]. - Michael Somos, Aug 07 2005
Expansion of 1/((x^2+1)*(x^4+1)*(x^8-x^4+1)*(x^4-x^2+1)*(x^2-x+1)*(1+x^2+x)*(x-1)^2).
G.f.: (1 - x^2) / ((1 - x)^2 * (1 - x^24)).
a(n) = -a(-24-n) for all n in Z. - Michael Somos, May 05 2015
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + ...
MAPLE
seriestolist(series(1/((x^2+1)*(x^4+1)*(x^8-x^4+1)*(x^4-x^2+1)*(x^2-x+1)*(1+x^2+x)*(x-1)^2), x=0, 150));
MATHEMATICA
a[ n_] := Ceiling[n / 24] + Ceiling[(n + 1) / 24]; (* Michael Somos, May 05 2015 *)
Total/@Partition[Ceiling[Range[0, 110]/24], 2, 1] (* Harvey P. Dale, Apr 05 2018 *)
PROG
(PARI) {a(n) = ceil(n / 24) + ceil((n+1) / 24)}; /* Michael Somos, Aug 07 2005 */
CROSSREFS
Sequence in context: A296076 A086858 A111892 * A087104 A343743 A069926
KEYWORD
nonn
AUTHOR
Creighton Dement, Jul 24 2005
STATUS
approved