OFFSET
0,2
FORMULA
Euler transform of length 24 sequence [ 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]. - Michael Somos, Aug 07 2005
Expansion of 1/((x^2+1)*(x^4+1)*(x^8-x^4+1)*(x^4-x^2+1)*(x^2-x+1)*(1+x^2+x)*(x-1)^2).
G.f.: (1 - x^2) / ((1 - x)^2 * (1 - x^24)).
a(n) = -a(-24-n) for all n in Z. - Michael Somos, May 05 2015
EXAMPLE
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + ...
MAPLE
seriestolist(series(1/((x^2+1)*(x^4+1)*(x^8-x^4+1)*(x^4-x^2+1)*(x^2-x+1)*(1+x^2+x)*(x-1)^2), x=0, 150));
MATHEMATICA
a[ n_] := Ceiling[n / 24] + Ceiling[(n + 1) / 24]; (* Michael Somos, May 05 2015 *)
Total/@Partition[Ceiling[Range[0, 110]/24], 2, 1] (* Harvey P. Dale, Apr 05 2018 *)
PROG
(PARI) {a(n) = ceil(n / 24) + ceil((n+1) / 24)}; /* Michael Somos, Aug 07 2005 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Creighton Dement, Jul 24 2005
STATUS
approved