login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282751
Expansion of phi_{7, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
4
0, 1, 132, 2196, 16912, 78150, 289872, 823592, 2164800, 4802733, 10315800, 19487292, 37138752, 62748686, 108714144, 171617400, 277094656, 410338962, 633960756, 893872100, 1321672800, 1808608032, 2572322544, 3404825976, 4753900800, 6105469375, 8282826552
OFFSET
0,3
COMMENTS
Multiplicative because A001160 is. - Andrew Howroyd, Jul 25 2018
LINKS
FORMULA
a(n) = n^2*A001160(n) for n > 0.
a(n) = (2*A282101(n) - A282595(n) - A013974(n))/1728.
Sum_{k=1..n} a(k) ~ zeta(6) * n^8 / 8. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-7). (End)
MATHEMATICA
Table[n^2 * DivisorSigma[5, n], {n, 0, 30}] (* Amiram Eldar, Sep 06 2023 *)
PROG
(PARI) a(n) = if(n < 1, 0, n^2*sigma(n, 5)) \\ Andrew Howroyd, Jul 25 2018
CROSSREFS
Cf. A282097 (phi_{3, 2}), A282099 (phi_{5, 2}), this sequence (phi_{7, 2}), A282753 (phi_{9, 2}).
Cf. A282101 (E_2*E_4^2), A282595 (E_2^2*E_6), A013974 (E_4*E_6 = E_10).
Cf. A001160 (sigma_5(n)), A282050 (n*sigma_5(n)), this sequence (n^2*sigma_5(n)).
Cf. A013664.
Sequence in context: A213380 A119982 A233066 * A129975 A064303 A220925
KEYWORD
nonn,easy,mult
AUTHOR
Seiichi Manyama, Feb 21 2017
STATUS
approved