login
A282751
Expansion of phi_{7, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
4
0, 1, 132, 2196, 16912, 78150, 289872, 823592, 2164800, 4802733, 10315800, 19487292, 37138752, 62748686, 108714144, 171617400, 277094656, 410338962, 633960756, 893872100, 1321672800, 1808608032, 2572322544, 3404825976, 4753900800, 6105469375, 8282826552
OFFSET
0,3
COMMENTS
Multiplicative because A001160 is. - Andrew Howroyd, Jul 25 2018
LINKS
FORMULA
a(n) = n^2*A001160(n) for n > 0.
a(n) = (2*A282101(n) - A282595(n) - A013974(n))/1728.
Sum_{k=1..n} a(k) ~ zeta(6) * n^8 / 8. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-7). (End)
MATHEMATICA
Table[n^2 * DivisorSigma[5, n], {n, 0, 30}] (* Amiram Eldar, Sep 06 2023 *)
PROG
(PARI) a(n) = if(n < 1, 0, n^2*sigma(n, 5)) \\ Andrew Howroyd, Jul 25 2018
CROSSREFS
Cf. A282097 (phi_{3, 2}), A282099 (phi_{5, 2}), this sequence (phi_{7, 2}), A282753 (phi_{9, 2}).
Cf. A282101 (E_2*E_4^2), A282595 (E_2^2*E_6), A013974 (E_4*E_6 = E_10).
Cf. A001160 (sigma_5(n)), A282050 (n*sigma_5(n)), this sequence (n^2*sigma_5(n)).
Cf. A013664.
Sequence in context: A213380 A119982 A233066 * A129975 A064303 A220925
KEYWORD
nonn,easy,mult
AUTHOR
Seiichi Manyama, Feb 21 2017
STATUS
approved