login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282754
Admirable numbers such that the subtracted divisor is a Fibonacci number.
1
12, 20, 40, 70, 88, 104, 464, 650, 1504, 1888, 1952, 4030, 5830, 7192, 7912, 8925, 9555, 10792, 13736, 17272, 30555, 30592, 32128, 32445, 78975, 130304, 442365, 521728, 522752, 1713592, 1848964, 4526272, 8353792, 8378368, 8382464, 9928792, 11547352, 17999992
OFFSET
1,1
COMMENTS
Subsequence of A111592.
The corresponding Fibonacci numbers are given by the sequence {b(n)} = 2, 1, 5, 2, 2, 1, 1, 1, 8, 2, 1, 2, 2, 8, 8, 3, 21, 8, 34, 8, 21, 8, 2, 3, 13, 1, 3, 2, 1, ....
LINKS
Terry Trotter, Admirable Numbers, 2009. [Wayback Machine copy] [Warning: As of March 2018 this site appears to have been hacked. Proceed with great caution. The original content should be retrieved from the Wayback machine and added here. - N. J. A. Sloane, Mar 29 2018]
EXAMPLE
40 is in the sequence because sigma(40) - 2*5 = 90 - 10 = 80 = 2*40, where 5 is a Fibonacci number, or 1 + 2 + 4 + 8 + 10 + 20 - 5 = 40 where the subtracted divisor is 5.
MAPLE
with(numtheory):
for n from 1 to 20000 do:
x:=divisors(n):n0:=nops(x):
for i from 1 to n0 do:
u:=sqrt(5*x[i]^2-4):v:=sqrt(5*x[i]^2+4):
if (floor(u)=u or floor(v)=v) and sigma(n)-2*x[i]=2*n
then
printf(`%d %d \n`, n, x[i]):
else
fi:
od:
od:
MATHEMATICA
With[{nn = 10^6}, Function[s, Flatten@ Position[#, 1] &@ Table[Total@ Boole@ Map[MemberQ[s, #] &, Select[Most@ Divisors@ n, Function[d, DivisorSigma[1, n] - 2 d == 2 n]]], {n, nn}]]@ Fibonacci@ Range[2 + Floor@ Log[GoldenRatio, nn]]] (* Michael De Vlieger, Feb 24 2017 *) (* or *)
fibQ[n_] := IntegerQ@ Sqrt[5 n^2 + 4] || IntegerQ@ Sqrt[5 n^2 - 4]; ok[n_] := Block[{d = DivisorSigma[1, n] - 2 n}, d>0 && EvenQ@d && Mod[n, d/2] == 0 && fibQ[d/2]]; Select[Range[10^6], ok] (* faster, Giovanni Resta, Mar 10 2017 *)
PROG
(PARI) isadmirable(n)=if(issquare(n)||issquare(n/2), 0, my(d=sigma(n)/2-n); (d>0 && d!=n && n%d==0)*d);
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8))
isok(n) = (d=isadmirable(n)) && isfib(d); \\ Michel Marcus, Mar 10 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 21 2017
EXTENSIONS
More terms from Michel Marcus, Mar 10 2017
STATUS
approved