login
A282101
Coefficients in q-expansion of E_2*E_4^2, where E_2, E_4 are the Eisenstein series shown in A006352, A004009, respectively.
11
1, 456, 50328, -470496, -21784008, -234371664, -1446514848, -6502690752, -23328111240, -71276388312, -191952331632, -468159788448, -1052750026272, -2212261706256, -4394299104576, -8303419066176, -15060718806024, -26284654025712, -44471780630856
OFFSET
0,2
LINKS
MATHEMATICA
terms = 19;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E2[x]*E4[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
CROSSREFS
Cf. A006352 (E_2), A004009 (E_4), A008410 (E_8).
Cf. A281374 (E_2^2), A282019 (E_2*E_4), A282096 (E_2*E_6), this sequence (E_2*E_8), A282102 (E_2*E_10).
Sequence in context: A268162 A223750 A048110 * A037945 A278731 A282047
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 06 2017
STATUS
approved