login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in q-expansion of E_2*E_4^2, where E_2, E_4 are the Eisenstein series shown in A006352, A004009, respectively.
11

%I #14 Feb 23 2018 03:40:41

%S 1,456,50328,-470496,-21784008,-234371664,-1446514848,-6502690752,

%T -23328111240,-71276388312,-191952331632,-468159788448,-1052750026272,

%U -2212261706256,-4394299104576,-8303419066176,-15060718806024,-26284654025712,-44471780630856

%N Coefficients in q-expansion of E_2*E_4^2, where E_2, E_4 are the Eisenstein series shown in A006352, A004009, respectively.

%H Seiichi Manyama, <a href="/A282101/b282101.txt">Table of n, a(n) for n = 0..1000</a>

%t terms = 19;

%t E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];

%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];

%t E2[x]*E4[x]^2 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 23 2018 *)

%Y Cf. A006352 (E_2), A004009 (E_4), A008410 (E_8).

%Y Cf. A281374 (E_2^2), A282019 (E_2*E_4), A282096 (E_2*E_6), this sequence (E_2*E_8), A282102 (E_2*E_10).

%K sign

%O 0,2

%A _Seiichi Manyama_, Feb 06 2017