login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282019
Coefficients in q-expansion of E_2*E_4, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009, respectively.
14
1, 216, -3672, -62496, -322488, -1121904, -2969568, -6737472, -13678200, -24978312, -43826832, -70620768, -112325472, -166558896, -248342976, -346320576, -491604984, -655461072, -897864696, -1154109600, -1532856528, -1921344768, -2488726944, -3042415296, -3876616800, -4639932504
OFFSET
0,2
LINKS
MAPLE
with(numtheory); M:=100;
E := proc(k) local n, t1; global M;
t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
series(t1, q, M+1); end;
e2:=E(2); e4:=E(4); e6:=E(6);
series(e2*e4, q, M+1);
seriestolist(%);
MATHEMATICA
terms = 26;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E2[x]*E4[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
CROSSREFS
Sequence in context: A017235 A152241 A183785 * A017343 A269190 A017463
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Feb 05 2017
STATUS
approved