login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282017
Coefficients in q-expansion of (E_4 + E_2^2)/2, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009, respectively.
0
1, 96, 1296, 4992, 13488, 25920, 50112, 74496, 123120, 164832, 246240, 300672, 442176, 501312, 694656, 794880, 1052016, 1135296, 1534032, 1591680, 2086560, 2214912, 2763072, 2840832, 3723840, 3668640, 4590432, 4750080, 5801088, 5728320, 7309440, 7007232, 8697456, 8722944, 10349856, 10160640
OFFSET
0,2
MAPLE
with(numtheory); M:=100;
E := proc(k) local n, t1; global M;
t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
series(t1, q, M+1); end;
e2:=E(2); e4:=E(4); e6:=E(6);
series((e2^2+e4)/2, q, M+1);
seriestolist(%);
CROSSREFS
Cf. A004009 and A006352.
Sequence in context: A232918 A187165 A229533 * A263567 A223292 A168526
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 05 2017
STATUS
approved