login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183785
Half the number of (n+1) X 3 0..2 arrays with no 2 X 2 subblock having sum 4.
1
216, 3552, 57966, 948164, 15497634, 253372446, 4142036148, 67714639662, 1106996131802, 18097205612196, 295853182740306, 4836611736951630, 79068975444380772, 1292620478037357518, 21131773136239117962
OFFSET
1,1
COMMENTS
Column 2 of A183792.
LINKS
FORMULA
Empirical: a(n) = 12*a(n-1) + 90*a(n-2) - 279*a(n-3) - 618*a(n-4) + 2092*a(n-5) - 1344*a(n-6).
Empirical g.f.: 2*x*(108 + 480*x - 2049*x^2 - 3422*x^3 + 13611*x^4 - 9072*x^5) / (1 - 12*x - 90*x^2 + 279*x^3 + 618*x^4 - 2092*x^5 + 1344*x^6). - Colin Barker, Apr 04 2018
EXAMPLE
Some solutions for 5 X 3:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
..1..1..2....1..2..1....1..2..1....1..1..1....1..0..2....0..0..0....2..1..0
..1..0..0....2..1..2....2..2..1....2..1..2....1..1..0....2..1..0....0..0..1
..0..0..1....0..2..0....1..2..2....0..2..0....1..0..1....2..0..1....2..1..1
..1..1..0....1..0..1....2..1..1....1..2..1....0..0..1....0..1..0....2..1..0
CROSSREFS
Cf. A183792.
Sequence in context: A027364 A017235 A152241 * A282019 A017343 A269190
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 07 2011
STATUS
approved