login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Half the number of (n+1) X 3 0..2 arrays with no 2 X 2 subblock having sum 4.
1

%I #9 Apr 04 2018 12:09:32

%S 216,3552,57966,948164,15497634,253372446,4142036148,67714639662,

%T 1106996131802,18097205612196,295853182740306,4836611736951630,

%U 79068975444380772,1292620478037357518,21131773136239117962

%N Half the number of (n+1) X 3 0..2 arrays with no 2 X 2 subblock having sum 4.

%C Column 2 of A183792.

%H R. H. Hardin, <a href="/A183785/b183785.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 12*a(n-1) + 90*a(n-2) - 279*a(n-3) - 618*a(n-4) + 2092*a(n-5) - 1344*a(n-6).

%F Empirical g.f.: 2*x*(108 + 480*x - 2049*x^2 - 3422*x^3 + 13611*x^4 - 9072*x^5) / (1 - 12*x - 90*x^2 + 279*x^3 + 618*x^4 - 2092*x^5 + 1344*x^6). - _Colin Barker_, Apr 04 2018

%e Some solutions for 5 X 3:

%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0

%e ..1..1..2....1..2..1....1..2..1....1..1..1....1..0..2....0..0..0....2..1..0

%e ..1..0..0....2..1..2....2..2..1....2..1..2....1..1..0....2..1..0....0..0..1

%e ..0..0..1....0..2..0....1..2..2....0..2..0....1..0..1....2..0..1....2..1..1

%e ..1..1..0....1..0..1....2..1..1....1..2..1....0..0..1....0..1..0....2..1..0

%Y Cf. A183792.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 07 2011