OFFSET
1,4
COMMENTS
Alladi and Erdős (1977) proved that for all numbers m>=0, m!=1, the sequence of numbers k such that a(k) = m has a positive asymptotic density which is equal to a rational multiple of 1/zeta(2) = 6/Pi^2 (A059956). For example, when m=0, the sequence is the squarefree numbers (A005117), whose density is 6/Pi^2, and when m=2 the sequence is A081770, whose density is 1/Pi^2. - Amiram Eldar, Nov 02 2020
REFERENCES
Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions: Asymptotic Formulae for Sums of Reciprocals of Arithmetical Functions and Related Fields, Amsterdam, Netherlands: North-Holland, 1980. See pp. 164-166.
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 165.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000
Krishnaswami Alladi and Paul Erdős, On an additive arithmetic function, Pacific Journal of Mathematics, Vol. 71, No. 2 (1977), pp. 275-294, alternative link.
Jean-Marie De Koninck, Paul Erdős and Aleksandar Ivić, Reciprocals of certain large additive functions, Canadian Mathematical Bulletin, Vol. 24, No. 2 (1981), pp. 225-231.
Aleksandar Ivić, On certain large additive functions, arXiv:math/0311505 [math.NT], 2003.
FORMULA
a(A005117(n)) = 0.
Additive with a(1) = 0 and a(p^e) = p*(e-1) for prime p and e > 0. - Werner Schulte, Feb 24 2019
From Amiram Eldar, Nov 02 2020: (Start)
a(n) = a(A057521(n)).
Sum_{n<=x} a(n) ~ x*log(log(x)) + O(x) (Alladi and Erdős, 1977).
Sum_{n<=x, n nonsquarefree} 1/a(n) ~ c*x + O(sqrt(x)*log(x)), where c = Integral_{t=0..1} (F(t)-6/Pi^2)/t dt, and F(t) = Product_{p prime} (1-1/p)*(1-1/(t^p - p)) (De Koninck et al., 1981; Finch, 2018), or, equivalently c = Sum_{k>=2} d(k)/k = 0.1039..., where d(k) = (6/Pi^2)*A338559(k)/A338560(k) is the asymptotic density of the numbers m with a(m) = k (Alladi and Erdős, 1977; Ivić, 2003). (End)
MATHEMATICA
Array[Total@ # - Total@ Union@ # &@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger@ #] &, 105] (* Michael De Vlieger, Feb 25 2019 *)
PROG
(PARI) sopfr(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2]);
sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]);
a(n) = sopfr(n) - sopf(n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 31 2016
EXTENSIONS
More terms from Antti Karttunen, Oct 07 2017
STATUS
approved