login
A280291
Numbers n such that number of partitions of n is odd and number of partitions of n into distinct parts is odd.
3
0, 1, 5, 7, 12, 35, 51, 77, 92, 145, 155, 210, 222, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 610, 672, 737, 805, 852, 876, 1190, 1247, 1335, 1426, 1617, 1717, 1855, 1962, 2035, 2147, 2542, 2625, 2795, 2882, 3197, 3337, 3480, 3626, 3775, 3876, 4030, 4347, 4510, 4565, 4845, 4902
OFFSET
1,3
COMMENTS
Intersection of A001318 and A052002.
Numbers n such that A000035(A000041(n)) = 1 and A000035(A000009(n)) = 1.
EXAMPLE
7 is in the sequence because we have:
----------------------------------
number of partitions = 15 (is odd)
----------------------------------
7 = 7
6 + 1 = 7
5 + 2 = 7
5 + 1 + 1 = 7
4 + 3 = 7
4 + 2 + 1 = 7
4 + 1 + 1 + 1 = 7
3 + 3 + 1 = 7
3 + 2 + 2 = 7
3 + 2 + 1 + 1 = 7
3 + 1 + 1 + 1 + 1 = 7
2 + 2 + 2 + 1 = 7
2 + 2 + 1 + 1 + 1 = 7
2 + 1 + 1 + 1 + 1 + 1 = 7
1 + 1 + 1 + 1 + 1 + 1 + 1 = 7
-----------------------------------------------------
number of partitions into distinct parts = 5 (is odd)
-----------------------------------------------------
7 = 7
6 + 1 = 7
5 + 2 = 7
4 + 3 = 7
4 + 2 + 1 = 7
MATHEMATICA
Join[{0}, Select[Range[5000], Mod[PartitionsP[#1], 2] == Mod[PartitionsQ[#1], 2] == 1 & ]]
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Dec 31 2016
EXTENSIONS
a(1)=0 inserted by Alois P. Heinz, Dec 31 2016
STATUS
approved