OFFSET
1,3
COMMENTS
LINKS
Eric Weisstein's World of Mathematics, Partition Function P, Partition Function Q
EXAMPLE
7 is in the sequence because we have:
----------------------------------
number of partitions = 15 (is odd)
----------------------------------
7 = 7
6 + 1 = 7
5 + 2 = 7
5 + 1 + 1 = 7
4 + 3 = 7
4 + 2 + 1 = 7
4 + 1 + 1 + 1 = 7
3 + 3 + 1 = 7
3 + 2 + 2 = 7
3 + 2 + 1 + 1 = 7
3 + 1 + 1 + 1 + 1 = 7
2 + 2 + 2 + 1 = 7
2 + 2 + 1 + 1 + 1 = 7
2 + 1 + 1 + 1 + 1 + 1 = 7
1 + 1 + 1 + 1 + 1 + 1 + 1 = 7
-----------------------------------------------------
number of partitions into distinct parts = 5 (is odd)
-----------------------------------------------------
7 = 7
6 + 1 = 7
5 + 2 = 7
4 + 3 = 7
4 + 2 + 1 = 7
MATHEMATICA
Join[{0}, Select[Range[5000], Mod[PartitionsP[#1], 2] == Mod[PartitionsQ[#1], 2] == 1 & ]]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Dec 31 2016
EXTENSIONS
a(1)=0 inserted by Alois P. Heinz, Dec 31 2016
STATUS
approved