OFFSET
1,1
COMMENTS
LINKS
Eric Weisstein's World of Mathematics, Partition Function P, Partition Function Q
EXAMPLE
8 is in the sequence because we have:
-----------------------------------
number of partitions = 22 (is even)
-----------------------------------
8 = 8
7 + 1 = 8
6 + 2 = 8
6 + 1 + 1 = 8
5 + 3 = 8
5 + 2 + 1 = 8
5 + 1 + 1 + 1 = 8
4 + 4 = 8
4 + 3 + 1 = 8
4 + 2 + 2 = 8
4 + 2 + 1 + 1 = 8
4 + 1 + 1 + 1 + 1 = 8
3 + 3 + 2 = 8
3 + 3 + 1 + 1 = 8
3 + 2 + 2 + 1 = 8
3 + 2 + 1 + 1 + 1 = 8
3 + 1 + 1 + 1 + 1 + 1 = 8
2 + 2 + 2 + 2 = 8
2 + 2 + 2 + 1 + 1 = 8
2 + 2 + 1 + 1 + 1 + 1 = 8
2 + 1 + 1 + 1 + 1 + 1 + 1 = 8
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8
-------------------------------------------------------
number of partitions into distinct parts = 6 (is even)
-------------------------------------------------------
8 = 8
7 + 1 = 8
6 + 2 = 8
5 + 3 = 8
5 + 2 + 1 = 8
4 + 3 + 1 = 8
MATHEMATICA
Select[Range[180], Mod[PartitionsP[#1], 2] == Mod[PartitionsQ[#1], 2] == 0 & ]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Dec 31 2016
STATUS
approved