This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280290 Numbers n such that number of partitions of n is even and number of partitions of n into distinct parts is even. 3
 8, 9, 10, 11, 19, 21, 25, 27, 28, 30, 31, 34, 42, 45, 46, 47, 50, 55, 58, 59, 62, 64, 65, 66, 74, 75, 78, 79, 80, 84, 86, 94, 96, 97, 98, 101, 103, 106, 108, 109, 110, 112, 113, 116, 120, 122, 124, 125, 128, 129, 130, 131, 133, 135, 136, 137, 141, 142, 147, 149, 151, 153, 154, 158, 160, 163, 167, 170, 171, 174, 175, 179, 180 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Intersection of A001560 and A090864. Numbers n such that A000035(A000041(n)) = 0 and A000035(A000009(n)) = 0. LINKS Eric Weisstein's World of Mathematics, Partition Function P, Partition Function Q EXAMPLE 8 is in the sequence because we have: ----------------------------------- number of partitions = 22 (is even) ----------------------------------- 8 = 8 7 + 1 = 8 6 + 2 = 8 6 + 1 + 1 = 8 5 + 3 = 8 5 + 2 + 1 = 8 5 + 1 + 1 + 1 = 8 4 + 4 = 8 4 + 3 + 1 = 8 4 + 2 + 2 = 8 4 + 2 + 1 + 1 = 8 4 + 1 + 1 + 1 + 1 = 8 3 + 3 + 2 = 8 3 + 3 + 1 + 1 = 8 3 + 2 + 2 + 1 = 8 3 + 2 + 1 + 1 + 1 = 8 3 + 1 + 1 + 1 + 1 + 1 = 8 2 + 2 + 2 + 2 = 8 2 + 2 + 2 + 1 + 1 = 8 2 + 2 + 1 + 1 + 1 + 1 = 8 2 + 1 + 1 + 1 + 1 + 1 + 1 = 8 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 ------------------------------------------------------- number of partitions into distinct parts = 6 (is even) ------------------------------------------------------- 8 = 8 7 + 1 = 8 6 + 2 = 8 5 + 3 = 8 5 + 2 + 1 = 8 4 + 3 + 1 = 8 MATHEMATICA Select[Range[180], Mod[PartitionsP[#1], 2] == Mod[PartitionsQ[#1], 2] == 0 & ] CROSSREFS Cf. A000009, A000035, A000041, A001560, A090864, A280288, A280289, A280291. Sequence in context: A296701 A297134 A247455 * A138581 A323062 A097363 Adjacent sequences:  A280287 A280288 A280289 * A280291 A280292 A280293 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Dec 31 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 01:25 EDT 2019. Contains 328211 sequences. (Running on oeis4.)