|
|
A280288
|
|
Numbers n such that number of partitions of n is even and number of partitions of n into distinct parts is odd.
|
|
3
|
|
|
2, 15, 22, 26, 40, 57, 70, 100, 117, 126, 176, 187, 247, 260, 532, 551, 590, 651, 715, 782, 925, 950, 1001, 1027, 1080, 1107, 1162, 1276, 1365, 1457, 1520, 1552, 1650, 1751, 1820, 1926, 2072, 2185, 2262, 2301, 2380, 2420, 2501, 2667, 2752, 2926, 3015, 3060, 3151, 3290, 3432, 3577, 3725, 3927, 4082, 4187, 4240, 4401
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
15 is in the sequence because we have:
------------------------------------
number of partitions = 176 (is even)
------------------------------------
15 = 15
14 + 1 = 15
13 + 2 = 15
13 + 1 + 1 = 15
12 + 3 = 15
12 + 2 + 1 = 15
12 + 1 + 1 + 1 = 15
11 + 4 = 15
11 + 3 + 1 = 15
11 + 2 + 2 = 15
11 + 2 + 1 + 1 = 15
11 + 1 + 1 + 1 + 1 = 15
...
------------------------------------------------------
number of partitions into distinct parts = 27 (is odd)
------------------------------------------------------
15 = 15
14 + 1 = 15
13 + 2 = 15
12 + 3 = 15
12 + 2 + 1 = 15
11 + 4 = 15
11 + 3 + 1 = 15
10 + 5 = 15
10 + 4 + 1 = 15
10 + 3 + 2 = 15
...
|
|
MATHEMATICA
|
Select[Range[4500], Mod[PartitionsP[#1], 2] == 0 && Mod[PartitionsQ[#1], 2] == 1 & ]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|