login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280285
Number of partitions of n into odd composite numbers (A071904).
2
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 0, 2, 1, 1, 3, 0, 0, 3, 1, 0, 4, 1, 1, 5, 1, 0, 5, 2, 2, 6, 2, 1, 8, 3, 1, 8, 3, 2, 11, 3, 2, 12, 5, 4, 13, 5, 3, 16, 8, 4, 18, 7, 6, 22, 9, 7, 24, 12, 9, 28, 12, 9, 33, 18, 11, 36, 18, 14, 45, 22, 16, 48, 26, 22, 54, 29, 23, 66, 38
OFFSET
0,28
FORMULA
G.f.: ((1 - x)/(1 - x^2))*Product_{k>=1} (1 - x^(2*k))*(1 - x^prime(k))/(1 - x^k).
EXAMPLE
a(36) = 3 because we have [27, 9], [21, 15] and [9, 9, 9, 9].
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(add(
`if`(d>1 and d::odd and not isprime(d), d, 0),
d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Dec 31 2016
MATHEMATICA
nmax = 100; CoefficientList[Series[(1 - x)/(1 - x^2) Product[(1 - x^(2 k)) (1 - x^Prime[k])/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 31 2016
STATUS
approved