login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216921
a(n) = 2*n+1 - gpf(denominator(B°(2*n))) where B°(n) are Zagier's modification of the Bernoulli numbers and gpf(n) is the greatest prime factor of n.
1
0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 24, 0, 0, 2, 32, 0, 2, 0, 0, 2, 0, 2, 40, 0, 2, 28, 0, 0, 2, 34, 0, 2, 0, 0, 2, 40, 0, 2, 0, 2, 84, 0, 2, 46, 92, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 58, 116, 60, 120, 64, 0, 2, 0, 2, 132, 0, 0, 2, 140, 72, 144, 0, 0, 2, 132, 0
OFFSET
1,4
COMMENTS
Dixit and others (see link, p.13) wrote: "The data suggests that the prime factors of alpha(2n) [= denominator(B°(2n))] are bounded by 2n + 1." If this is true a(n) will never become negative. The data also suggests that a(n) = 0 only if 2n+1 is prime.
LINKS
A. Dixit, V. H. Moll, Ch. Vignat, The Zagier modification of Bernoulli numbers and a polynomial extension. Part I, arXiv:1209.4110v1 [math.NT], 2010.
D. Zagier. A modified Bernoulli number, Nieuw Archief voor Wiskunde, 16:63-72, 1998.
FORMULA
a(n) = 2*n+1 - A006530(A216923(2*n)).
MAPLE
A216921 := proc(n) local zb2, F;
zb2 := denom(add(binomial(2*n+r, 2*r)*bernoulli(r)/(2*n+r), r=0..2*n));
F := ifactors(zb2)[2]; 2*n+1-F[nops(F)][1] end;
MATHEMATICA
b[n_] := Sum[Binomial[n + k, 2*k]*BernoulliB[k]/(n + k), {k, 0, n}] // Denominator;
a[n_] := 2*n + 1 - FactorInteger[b[2*n]][[-1, 1]];
Array[a, 80] (* Jean-François Alcover, Nov 29 2017 *)
PROG
(PARI) f(n) = denominator(sum(r=0, n, binomial(n+r, 2*r)*bernfrac(r)/(n+r))); \\ A216923
a(n) = 2*n+1 - vecmax(factor(f(2*n))[, 1]); \\ Michel Marcus, Sep 29 2019
CROSSREFS
Sequence in context: A341773 A359288 A096142 * A344982 A359240 A280285
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 20 2012
STATUS
approved