OFFSET
1,4
COMMENTS
Dixit and others (see link, p.13) wrote: "The data suggests that the prime factors of alpha(2n) [= denominator(B°(2n))] are bounded by 2n + 1." If this is true a(n) will never become negative. The data also suggests that a(n) = 0 only if 2n+1 is prime.
LINKS
A. Dixit, V. H. Moll, Ch. Vignat, The Zagier modification of Bernoulli numbers and a polynomial extension. Part I, arXiv:1209.4110v1 [math.NT], 2010.
D. Zagier. A modified Bernoulli number, Nieuw Archief voor Wiskunde, 16:63-72, 1998.
MAPLE
A216921 := proc(n) local zb2, F;
zb2 := denom(add(binomial(2*n+r, 2*r)*bernoulli(r)/(2*n+r), r=0..2*n));
F := ifactors(zb2)[2]; 2*n+1-F[nops(F)][1] end;
MATHEMATICA
b[n_] := Sum[Binomial[n + k, 2*k]*BernoulliB[k]/(n + k), {k, 0, n}] // Denominator;
a[n_] := 2*n + 1 - FactorInteger[b[2*n]][[-1, 1]];
Array[a, 80] (* Jean-François Alcover, Nov 29 2017 *)
PROG
(PARI) f(n) = denominator(sum(r=0, n, binomial(n+r, 2*r)*bernfrac(r)/(n+r))); \\ A216923
a(n) = 2*n+1 - vecmax(factor(f(2*n))[, 1]); \\ Michel Marcus, Sep 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 20 2012
STATUS
approved