Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #24 Sep 29 2019 07:21:57
%S 0,0,0,2,0,0,2,0,0,2,0,2,24,0,0,2,32,0,2,0,0,2,0,2,40,0,2,28,0,0,2,34,
%T 0,2,0,0,2,40,0,2,0,2,84,0,2,46,92,0,2,0,0,2,0,0,2,0,2,58,116,60,120,
%U 64,0,2,0,2,132,0,0,2,140,72,144,0,0,2,132,0
%N a(n) = 2*n+1 - gpf(denominator(B°(2*n))) where B°(n) are Zagier's modification of the Bernoulli numbers and gpf(n) is the greatest prime factor of n.
%C Dixit and others (see link, p.13) wrote: "The data suggests that the prime factors of alpha(2n) [= denominator(B°(2n))] are bounded by 2n + 1." If this is true a(n) will never become negative. The data also suggests that a(n) = 0 only if 2n+1 is prime.
%H A. Dixit, V. H. Moll, Ch. Vignat, <a href="http://arxiv.org/abs/1209.4110">The Zagier modification of Bernoulli numbers and a polynomial extension. Part I</a>, arXiv:1209.4110v1 [math.NT], 2010.
%H D. Zagier. <a href="http://people.mpim-bonn.mpg.de/zagier/files/tex/ModifiedBernoulliNum/fulltext.pdf">A modified Bernoulli number</a>, Nieuw Archief voor Wiskunde, 16:63-72, 1998.
%F a(n) = 2*n+1 - A006530(A216923(2*n)).
%p A216921 := proc(n) local zb2, F;
%p zb2 := denom(add(binomial(2*n+r,2*r)*bernoulli(r)/(2*n+r),r=0..2*n));
%p F := ifactors(zb2)[2]; 2*n+1-F[nops(F)][1] end;
%t b[n_] := Sum[Binomial[n + k, 2*k]*BernoulliB[k]/(n + k), {k, 0, n}] // Denominator;
%t a[n_] := 2*n + 1 - FactorInteger[b[2*n]][[-1, 1]];
%t Array[a, 80] (* _Jean-François Alcover_, Nov 29 2017 *)
%o (PARI) f(n) = denominator(sum(r=0, n, binomial(n+r, 2*r)*bernfrac(r)/(n+r))); \\ A216923
%o a(n) = 2*n+1 - vecmax(factor(f(2*n))[,1]); \\ _Michel Marcus_, Sep 29 2019
%Y Cf. A006530, A216923.
%K nonn
%O 1,4
%A _Peter Luschny_, Sep 20 2012