The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216922 The numerators of Zagier's modification of the Bernoulli numbers. 3
 3, 1, -1, -27, -1, -29, 1, 451, 1, -65, -3, -6571, 3, 571, -1, -181613, -1, 23663513, 1, -10188203, 1, 564133, -3, -854671223, 3, 3380293, -1, -66346796677, -1, 2525207721201139, 1, -2050779016779123, 1, 513555084737, -3, -258395660795799074117, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..629 M. W. Coffey, V. de Angelis, A. Dixit, V. H. Moll, et al., The Zagier polynomials. Part II: Arithmetic properties of coefficients, arXiv:1303.6590 [math.NT], 2013. Atul Dixit, Victor H. Moll, Christophe Vignat, The Zagier modification of Bernoulli numbers and a polynomial extension. Part I, arXiv:1209.4110v1 [math.NT], 2012. D. Zagier. A modified Bernoulli number Nieuw Archief voor Wiskunde, 16:63-72, 1998. FORMULA a(n) = numerator(sum_{r=0..n} C(n+r,2*r)*B(r)/(n+r)); B(r) the Bernoulli numbers. MATHEMATICA a[n_] := Sum[ Binomial[n + k, 2*k]*BernoulliB[k]/(n + k), {k, 0, n}] // Numerator; Table[a[n], {n, 1, 37}] (* Jean-François Alcover, Jul 26 2013 *) PROG (Sage) def A216922(n):     return add(binomial(n+r, 2*r)*bernoulli(r)/(n+r) for r in (0..n)).numerator() [A216922(n) for n in (1..37)] (PARI) a(n) = numerator(sum(r=0, n, binomial(n+r, 2*r)*bernfrac(r)/(n+r))); \\ Michel Marcus, Aug 05 2018 CROSSREFS Cf. A216923 (denominators). Sequence in context: A156950 A083998 A277170 * A245243 A168242 A332540 Adjacent sequences:  A216919 A216920 A216921 * A216923 A216924 A216925 KEYWORD sign AUTHOR Peter Luschny, Sep 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 02:48 EDT 2021. Contains 346435 sequences. (Running on oeis4.)