login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332540
Numerators of coefficients in a series for Euler's constant gamma (negated).
2
3, 1, 1, 29, 67, 1507, 3121, 12703, 164551, 6344953, 147727471, 27529188163, 710710333, 271695249739, 1866529128749, 21255957303929, 908965802898697, 12844144201070519, 228917805573310159, 185233029315627847397, 104416844507809792139, 45256363943072384591371
OFFSET
0,1
LINKS
Iaroslav V. Blagouchine and Marc-Antoine Coppo, A note on some constants related to the zeta-function and their relationship with the Gregory coefficients, arXiv:1703.08601 [math.NT], 2017. Also The Ramanujan Journal 47.2 (2018): 457-473. See Cor. 2 to Th. 2.
Xavier Gourdon and Pascal Sebah, Collection of formulae for Euler's constant gamma.
FORMULA
The reference gives an explicit formula in terms of the Gregory numbers G_n = A002206/A002207.
gamma = 2*log(2*Pi) - Sum_{k>=0} A332540(k)/A332541(k). - Hugo Pfoertner, Feb 16 2020
MATHEMATICA
g[n_] := -(-1)^n*Sum[StirlingS1[n, j]/(j + 1), {j, 1, n}]/n!; Flatten[{3, Table[Numerator[2*Sum[g[k]*g[n + 2 - k], {k, 1, n}]/(n + 1)], {n, 1, 25}]}] (* Vaclav Kotesovec, Feb 16 2020 *)
CROSSREFS
Cf. A001620 (Euler's constant gamma).
Sequence in context: A216922 A245243 A168242 * A215750 A126465 A077509
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Feb 16 2020
EXTENSIONS
More terms from Vaclav Kotesovec, Feb 16 2020
STATUS
approved