login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into odd composite numbers (A071904).
2

%I #11 Feb 12 2017 19:21:20

%S 1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,1,1,0,2,0,0,2,0,0,2,

%T 1,1,3,0,0,3,1,0,4,1,1,5,1,0,5,2,2,6,2,1,8,3,1,8,3,2,11,3,2,12,5,4,13,

%U 5,3,16,8,4,18,7,6,22,9,7,24,12,9,28,12,9,33,18,11,36,18,14,45,22,16,48,26,22,54,29,23,66,38

%N Number of partitions of n into odd composite numbers (A071904).

%H Alois P. Heinz, <a href="/A280285/b280285.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompositeNumber.html">Composite Number</a>

%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>

%F G.f.: ((1 - x)/(1 - x^2))*Product_{k>=1} (1 - x^(2*k))*(1 - x^prime(k))/(1 - x^k).

%e a(36) = 3 because we have [27, 9], [21, 15] and [9, 9, 9, 9].

%p a:= proc(n) option remember; `if`(n=0, 1, add(add(

%p `if`(d>1 and d::odd and not isprime(d), d, 0),

%p d=numtheory[divisors](j))*a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Dec 31 2016

%t nmax = 100; CoefficientList[Series[(1 - x)/(1 - x^2) Product[(1 - x^(2 k)) (1 - x^Prime[k])/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A002095, A002808, A023895, A071904, A204389, A280287.

%K nonn

%O 0,28

%A _Ilya Gutkovskiy_, Dec 31 2016