login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278769
Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).
3
1, 1, 8, 26, 88, 269, 843, 2456, 7115, 19892, 54756, 147355, 390517, 1017091, 2612670, 6617641, 16556913, 40933339, 100104289, 242276236, 580718077, 1379161494, 3247074738, 7581837910, 17564867853, 40388447308, 92206496318, 209069338580, 470944571003, 1054178579266, 2345477963043, 5188246121144, 11412352653001
OFFSET
0,3
COMMENTS
Euler transform of the heptagonal numbers (A000566).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Heptagonal Number
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).
a(n) ~ exp(-3*Zeta'(-1)/2 - 5*Zeta(3)/(8*Pi^2) - 81*Zeta(3)^3/(2*Pi^8) - 3^(13/4)*Zeta(3)^2/(2^(7/4)*Pi^5) * n^(1/4) - 3^(3/2)*Zeta(3)/(sqrt(2)*Pi^2) * sqrt(n) + 2^(7/4)*Pi/3^(5/4) * n^(3/4)) / (2^(51/32) * 3^(3/32) * Pi^(1/8) * n^(19/32)). - Vaclav Kotesovec, Dec 02 2016
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d^2*(5*d-3)/2, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Dec 02 2016
MATHEMATICA
nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 28 2016
STATUS
approved