This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278766 Engel expansion of plastic constant (real root of x^3 - x - 1). 0
 1, 4, 4, 6, 6, 27, 74, 86, 372, 853, 947, 1475, 3686, 9084, 19174, 30737, 1530833, 2401466, 2521253, 3649563, 3802245, 9320024, 1092256819, 2114664794, 2878948610, 8842525055, 13769551820, 26996892389, 215947176106, 269439735691, 13694290818678, 18312336654245, 19649485782723, 63266709043539 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Eric Weisstein's World of Mathematics, Engel Expansion Eric Weisstein's World of Mathematics, Plastic Constant EXAMPLE (1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3) = 1.324717957244... = 1/1 + 1/(1*4) + 1/(1*4*4) + 1/(1*4*4*6) + 1/(1*4*4*6*6) + 1/(1*4*4*6*6*27) + ... MATHEMATICA EngelExp[A_, n_]:=Join[Array[1&, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[(1/2 + Sqrt[23/108])^(1/3) + (1/2 - Sqrt[23/108])^(1/3), 7! ], 40] CROSSREFS Cf. A006784 (for definition of Engel expansion). Cf. A060006, A072117. Sequence in context: A226833 A262260 A203632 * A320828 A065677 A006672 Adjacent sequences:  A278763 A278764 A278765 * A278767 A278768 A278769 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Nov 28 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 01:33 EST 2019. Contains 319351 sequences. (Running on oeis4.)