The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278768 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(3*k-1)/2). 8
1, 1, 6, 18, 55, 150, 424, 1113, 2923, 7401, 18510, 45271, 109297, 259447, 608428, 1407958, 3222132, 7292198, 16340830, 36265672, 79775931, 173999194, 376497975, 808471181, 1723592762, 3649271887, 7675809680, 16043777217, 33332888108, 68853608216, 141438908854, 288994878713, 587458691042 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Euler transform of the pentagonal numbers (A000326).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Pentagonal Number
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(3*k-1)/2).
a(n) ~ exp(-Zeta'(-1)/2 - 3*Zeta(3)/(8*Pi^2) - 25*Zeta(3)^3/(6*Pi^8) - 5^(5/4)*Zeta(3)^2/(2^(7/4)*Pi^5) * n^(1/4) - sqrt(5/2)*Zeta(3)/Pi^2 * sqrt(n) + 2^(7/4)*Pi/(3*5^(1/4)) * n^(3/4)) / (2^(155/96) * 5^(11/96) * Pi^(1/24) * n^(59/96)). - Vaclav Kotesovec, Dec 02 2016
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d^2*(3*d-1)/2, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Dec 02 2016
MATHEMATICA
nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (3 k - 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A292295 A183913 A056349 * A035070 A075386 A056343
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 28 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 23:20 EDT 2024. Contains 373401 sequences. (Running on oeis4.)