The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056343 Number of bracelets of length n using exactly three different colored beads. 6
 0, 0, 1, 6, 18, 56, 147, 411, 1084, 2979, 8043, 22244, 61278, 171030, 477929, 1345236, 3795750, 10758902, 30572427, 87149124, 248991822, 713096352, 2046303339, 5883433409, 16944543810, 48879769575 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Turning over will not create a new bracelet. REFERENCES M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2] LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 FORMULA a(n) = A027671(n) - 3*A000029(n) + 3. From Robert A. Russell, Sep 26 2018: (Start) a(n) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where k=3 is the number of colors and S2 is the Stirling subset number A008277. G.f.: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=3 is the number of colors. (End) EXAMPLE For a(4)=6, the arrangements are ABAC, ABCB, ACBC, AABC, ABBC, and ABCC. Only the last three are chiral, their reverses being AACB, ACBB, and ACCB respectively. - Robert A. Russell, Sep 26 2018 MATHEMATICA t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}]; a[n_] := T[n, 3]; Array[a, 26] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *) k=3; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n, 1, 30}] (* Robert A. Russell, Sep 26 2018 *) CROSSREFS Column 3 of A273891. Equals (A056283 + A056489) / 2 = A056283 - A305542 = A305542 + A056489. Sequence in context: A278768 A035070 A075386 * A363517 A227809 A119106 Adjacent sequences: A056340 A056341 A056342 * A056344 A056345 A056346 KEYWORD nonn AUTHOR Marks R. Nester STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 06:59 EDT 2024. Contains 374586 sequences. (Running on oeis4.)