|
|
A278770
|
|
Second series of Hankel determinants based on squares of Catalan numbers.
|
|
8
|
|
|
1, 4, 159, 81296, 585396881, 61994262028020, 98925461617709743975, 2414583243140269424293854400, 910504281815476426073145299359052745, 5341354769384557074743892800174971438265757284, 489946515248844365403775650233194419858267427195735348151, 705379807799940807283682167156246485805791300481296966713394135535056
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
It would be useful to know the formula for this sequence.
|
|
LINKS
|
|
|
FORMULA
|
Conjecture: lim n->infinity log(a(n))/n^2 = 2*log(2). - Vaclav Kotesovec, Nov 28 2016
|
|
MAPLE
|
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)->
(t-> (binomial(2*t, t)/(t+1))^2)(i+j))):
|
|
MATHEMATICA
|
Flatten[{1, Table[Det[Table[(CatalanNumber[i + j])^2, {i, n}, {j, n}]], {n, 11}]}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|