login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278772
Number of n X 2 0..1 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly two mistakes.
1
0, 2, 20, 117, 503, 1750, 5209, 13751, 33000, 73282, 152581, 300872, 566293, 1023724, 1786462, 3021818, 4971616, 7978746, 12521114, 19254543, 29066411, 43142066, 63046335, 90822745, 129113400, 181302810, 251689347, 345688410, 470071817
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = (1/3628800)*n^10 + (1/80640)*n^9 + (1/3780)*n^8 + (17/8064)*n^7 + (1513/172800)*n^6 + (167/11520)*n^5 + (12329/362880)*n^4 + (197/4032)*n^3 - (2167/50400)*n^2 - (11/168)*n.
Conjectures from Colin Barker, Feb 10 2019: (Start)
G.f.: x^2*(2 - 2*x + 7*x^2 - 14*x^3 + 12*x^4 - 5*x^5 + x^6) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)
EXAMPLE
Some solutions for n=4:
..0..0. .0..1. .1..1. .1..1. .1..1. .0..1. .0..1. .0..1. .1..1. .1..0
..0..1. .0..0. .1..0. .1..0. .1..0. .0..0. .1..0. .1..0. .1..1. .0..1
..0..0. .1..0. .1..0. .0..1. .0..0. .0..1. .1..1. .1..1. .1..0. .1..0
..0..1. .1..0. .0..0. .0..1. .1..1. .1..1. .1..0. .0..0. .0..1. .0..0
CROSSREFS
Column 2 of A278778.
Sequence in context: A084894 A203238 A061004 * A213432 A219837 A219759
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 28 2016
STATUS
approved