login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219759
Expansion of x^4*(2-12*x+24*x^2-8*x^3-41*x^4+57*x^5-16*x^6)/((1-x)*(1-3*x+x^2)*(1-2*x)^6).
10
0, 0, 0, 0, 2, 20, 120, 570, 2355, 8841, 30906, 102187, 323053, 984354, 2908671, 8375521, 23594410, 65237027, 177520325, 476515378, 1264297431, 3321423193, 8653113914, 22386784603, 57586262493, 147447786562, 376173191919, 957113924753, 2430649701066
OFFSET
0,5
LINKS
M. H. Albert, M. D. Atkinson and Robert Brignall, The enumeration of three pattern classes, arXiv:1206.3183 [math.CO] (2012), p. 30.
Index entries for linear recurrences with constant coefficients, signature (16,-112,449,-1132,1852,-1952,1264,-448,64).
FORMULA
G.f.: x^4*(2-12*x+24*x^2-8*x^3-41*x^4+57*x^5-16*x^6)/((1-x)*(1-3*x+x^2)*(1-2*x)^6).
MAPLE
A219759 := proc(n)
if n <= 1 then
0;
else
2^n*(881*n^2/24-14393*n/60+137+7*n^4/24-49*n^3/8+n^5/120) -384+ 64*A001906(n+2) ;
%/64 ;
end if;
end proc:
seq(A219759(n), n=0..20) ; # R. J. Mathar, Aug 19 2022
MATHEMATICA
CoefficientList[Series[x^4 (2 - 12 x + 24 x^2 - 8 x^3 - 41 x^4 + 57 x^5 - 16 x^6)/((1 - x) (1 - 3 x + x^2) (1 - 2 x)^6), {x, 0, 28}], x] (* Bruno Berselli, Nov 30 2012 *)
LinearRecurrence[{16, -112, 449, -1132, 1852, -1952, 1264, -448, 64}, {0, 0, 0, 0, 2, 20, 120, 570, 2355, 8841, 30906}, 40] (* Harvey P. Dale, Mar 01 2023 *)
PROG
(Maxima) makelist(coeff(taylor(x^4*(2-12*x+24*x^2-8*x^3-41*x^4+57*x^5-16*x^6)/((1-x)*(1-3*x+x^2)*(1-2*x)^6), x, 0, n), x, n), n, 0, 28); /* Bruno Berselli, Nov 29 2012 */
(Magma) I:=[0, 0, 0, 0, 2, 20, 120, 570, 2355, 8841, 30906, 102187, 323053]; [n le 11 select I[n] else 16*Self(n-1) -112*Self(n-2) + 449*Self(n-3) - 1132*Self(n-4) + 1852*Self(n-5) - 1952*Self(n-6) + 1264*Self(n-7) - 448*Self(n-8) + 64*Self(n-9): n in [1..30]]; // Vincenzo Librandi, Dec 14 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 28 2012
STATUS
approved