login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219751
Expansion of x^4*(2-3*x-x^2)/((1+x)*(1-2*x)^2).
10
0, 0, 0, 0, 2, 3, 8, 16, 36, 76, 164, 348, 740, 1564, 3300, 6940, 14564, 30492, 63716, 132892, 276708, 575260, 1194212, 2475804, 5126372, 10602268, 21903588, 45205276, 93206756, 192005916, 395196644, 812762908, 1670265060, 3430008604, 7038974180, 14435862300
OFFSET
0,5
LINKS
M. H. Albert, M. D. Atkinson and Robert Brignall, The enumeration of three pattern classes, arXiv:1206.3183 [math.CO], (2012), p. 14 (Lemma 4.3).
FORMULA
G.f.: x^4*(2-3*x-x^2)/((1+x)*(1-2*x)^2).
a(n) = (2^(n-5)*(3*n+16)+4*(-1)^n)/9 with n>3, a(0)=a(1)=a(2)=a(3)=0. [Bruno Berselli, Nov 29 2012]
MATHEMATICA
CoefficientList[Series[x^4 (2 - 3 x - x^2)/((1 + x) (1 - 2 x)^2), {x, 0, 35}], x] (* Bruno Berselli, Nov 30 2012 *)
PROG
(Maxima) makelist(coeff(taylor(x^4*(2-3*x-x^2)/((1+x)*(1-2*x)^2), x, 0, n), x, n), n, 0, 35); /* Bruno Berselli, Nov 29 2012 */
(Magma) I:=[0, 0, 0, 0, 2, 3, 8]; [n le 7 select I[n] else 3*Self(n-1) - 4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Dec 14 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 28 2012
STATUS
approved