login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219757
Expansion of x^4*(2-7*x+6*x^2+x^3-x^4)/((1-x)*(1-2*x)^4*(1-3*x+x^2)).
1
0, 0, 0, 0, 2, 17, 90, 383, 1436, 4958, 16159, 50480, 152690, 450343, 1301764, 3701990, 10387887, 28827688, 79265482, 216271927, 586261980, 1580524894, 4241295935, 11336890720, 30202962402, 80239307847, 212664541940, 562513804438, 1485379408591, 3916726647768
OFFSET
0,5
LINKS
M. H. Albert, M. D. Atkinson and Robert Brignall, The enumeration of three pattern classes, arXiv:1206.3183 [math.CO] (2012), p. 25.
FORMULA
G.f.: x^4*(2-7*x+6*x^2+x^3-x^4)/((1-x)*(1-2*x)^4*(1-3*x+x^2)).
MATHEMATICA
CoefficientList[Series[x^4(2-7x+6x^2+x^3-x^4)/((1-x)(1-2x)^4(1-3x+x^2)), {x, 0, 40}], x] (* Harvey P. Dale, Nov 29 2012 *)
PROG
(Maxima) makelist(coeff(taylor(x^4*(2-7*x+6*x^2+x^3-x^4)/((1-x)*(1-2*x)^4*(1-3*x+x^2)), x, 0, n), x, n), n, 0, 29); /* Bruno Berselli, Nov 29 2012 */
(Magma) I:=[0, 0, 0, 0, 2, 17, 90, 383, 1436, 4958]; [n le 10 select I[n] else 12*Self(n-1) - 60*Self(n-2) + 161*Self(n-3) - 248*Self(n-4) + 216*Self(n-5) - 96*Self(n-6) + 16*Self(n-7): n in [1..30]]; // Vincenzo Librandi, Dec 14 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 28 2012
STATUS
approved