login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).
3

%I #11 May 08 2017 00:17:45

%S 1,1,8,26,88,269,843,2456,7115,19892,54756,147355,390517,1017091,

%T 2612670,6617641,16556913,40933339,100104289,242276236,580718077,

%U 1379161494,3247074738,7581837910,17564867853,40388447308,92206496318,209069338580,470944571003,1054178579266,2345477963043,5188246121144,11412352653001

%N Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).

%C Euler transform of the heptagonal numbers (A000566).

%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeptagonalNumber.html">Heptagonal Number</a>

%H <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>

%F G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).

%F a(n) ~ exp(-3*Zeta'(-1)/2 - 5*Zeta(3)/(8*Pi^2) - 81*Zeta(3)^3/(2*Pi^8) - 3^(13/4)*Zeta(3)^2/(2^(7/4)*Pi^5) * n^(1/4) - 3^(3/2)*Zeta(3)/(sqrt(2)*Pi^2) * sqrt(n) + 2^(7/4)*Pi/3^(5/4) * n^(3/4)) / (2^(51/32) * 3^(3/32) * Pi^(1/8) * n^(19/32)). - _Vaclav Kotesovec_, Dec 02 2016

%p with(numtheory):

%p a:= proc(n) option remember; `if`(n=0, 1, add(add(

%p d^2*(5*d-3)/2, d=divisors(j))*a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..35); # _Alois P. Heinz_, Dec 02 2016

%t nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A000294, A000566, A000335, A023871.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Nov 28 2016