login
A276817
Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential precession.
5
-1, 2, 6, -3, -16, 8, -48, 4, 30, -20, 140, 10, -140, 420, -5, -48, 36, -288, -24, 384, -1280, 12, -192, -96, 1920, -3840, 6, 70, -56, 504, 42, -756, 2772, -28, 504, 252, -5544, 12012, 14, -252, -252, 2772, 2772, -24024, 36036, -7, -96, 80, -800, -64, 1280, -5120, 48, -960, -480, 11520, -26880, -32, 640, 640, -7680
OFFSET
0,2
COMMENTS
Irregular triangle read by rows (see examples).
Consider an axially symmetric oscillator in two dimensions with polar coordinates ( r, y ). By conservation of angular momentum, replace the cyclic angle coordinate y with dy/dt = 1/r^2. The system becomes one-dimensional in r, with an effective potential including the 1/r^2 term. Assume that the effective potential has a minimum around r0 and apply a linear transform r --> q = r-r0. Radial oscillations around the effective potential minimum follow the exact solution of A276738, A276814, A276815, A276816. Now dy = dx (dy/dt) / (dx/dt) = dx * Sum b^n*T(n,m)*F(n,m), with n=1,2,3.... and m=1,2,3...A000070(n). Basis functions F(n,m) are an ordered union over A276738's f(n,m): F(n,m')={ (1/r0^2)*(Q/r0)^n } & Append_{i=1..n}_{m=1..A000041(n)} (1/2/r0^2)*(Q/r0)^(n - i)*f(i,m), where each successive term f(i,m) is appended such that index m' inherets the ordering of each m index (see examples). Integrating dx over a range of 2 Pi loses all odd rows, as in A276815 / A276816. This sequence is a useful tool in classical and relativistic astronomy (follow links to Wolfram demonstrations).
REFERENCES
R. M. Wald, General Relativity, University of Chicago press, 2010, pages 139-143.
J.A. Wheeler, A Journey into Gravity and Spacetime, Scientific American Library, 1990, pages 168-183.
LINKS
Bradley Klee, Plane Pendulum and Beyond by Phase Space Geometry, arXiv:1605.09102 [physics.class-ph], 2016.
Bradley Klee, Estimating Planetary Perihelion Precession, Wolfram Demonstrations Project, 2106.
Bradley Klee, Pentagonal Orbits
Seqfans, Another planetary sequence, Seqfans mailing list, September 2016.
EXAMPLE
n/m 1 2 3 4 5 6 7
------------------------------------------
0 | -1
1 | 2 6
2 | -3 -16 8 -48
3 | 4 30 -20 140 10 -140 420
------------------------------------------
Construction of F(2,_). List f(i,_) basis sets: {f(1,_)={2*Q^3*v_3},f(2,_)= {2*Q^4*v_4, 2*Q^6*v_3^2}}; Integrate and join: F(2,_)={(1/r0^2)*(Q/r0)^2,2*Q^3*v_3*(1/2/r0^2)*(Q/r0),2*Q^4*v_4*(1/2/r0^2), 2*Q^6*v_3^2*(1/2/r0^2)}={Q^2/r0^4,Q^4*v_3/r0^3,Q^4*v_4/r0^2,Q^6*v_3^2/r0^2}.
dy Expansion to second order: dy=dx(-(1/r0^2)+b^2*(2*Q/r0^3 + 6*Q^3*v_3/r0^2)+b^3*(-3*Q^2/r0^4 - 16*Q^4*v_3/r0^3 - 48*Q^6*v_3^2/r0^2 + 8*Q^4*v_4/r0^2)+O(b^3).
Cancellation of higher orders 1 to infinity and closed orbits. Kepler values {r0 = 1, v_n := ((n - 1)/4)*(-1)^n} yield dy = -dx. Harmonic oscillator values {r0 = Sqrt[2], v_n := ((-1)^n*(n + 1)/4/2)/sqrt[2]^n} yield dy = -(1/2)*dx. Parity symmetric conjectured values {r0=Sqrt[1/R],v_n odd n := 0,v_n even n := R^(n/2 - 1)*(n/8)} yield dy = -R*dx (see attached image "Pentagonal Orbits")?
MATHEMATICA
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
-> ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
ydot[n__] := Expand[Normal@Series[1/(r0 + q)^2 /. {q -> R[n] Q} /. RRules[n], {b, 0, n}]]
dy[n_] := Expand@Normal@Series[ydot[n]/xDot[n], {b, 0, n}]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#], 2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
extendedBasis[n_] :=Flatten[(1/2/r0^2) (Q/r0)^(n - #) basis[#] & /@ Range[0, n]]
TriangleRow[n_, func_] := Coefficient[func, b^n #] & /@ extendedBasis[n]
With[{dy5 = dy[5]}, TriangleRow[#, dy5] /. v[_] -> 0 & /@ Range[0, 5]]
(*Kepler Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {r0 -> 1, Cos[_] -> 0, v[n_] :> ((n - 1)/4)*(-1)^n}
(*Harmonic Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[_] -> 0, v[n_] :> ((-1)^n*(n + 1)/4/2)/Sqrt[2]^n, r0 -> Sqrt[2]}
(*Conjecture*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[_] -> 0, v[n_ /; OddQ[n]] :> 0, v[n_] :> RR^(n/2 - 1)*n/8, r0 -> Sqrt[1/RR]}
KEYWORD
sign,tabf
AUTHOR
Bradley Klee, Sep 18 2016
STATUS
approved