login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145642
Cubefree part of n!.
7
1, 2, 6, 3, 15, 90, 630, 630, 210, 2100, 23100, 34650, 450450, 6306300, 28028, 7007, 119119, 2144142, 40738698, 101846745, 230945, 5080790, 116858170, 350574510, 70114902, 1822987452, 1822987452, 6380456082, 185033226378, 5550996791340
OFFSET
1,2
LINKS
Rafael Jakimczuk, On the h-th free part of the factorial, International Mathematical Forum, Vol. 12, No. 13 (2017), pp. 629-634.
Eric Weisstein's World of Mathematics, Cubefree Part.
FORMULA
a(n) = A050985(A000142(n)). - Michel Marcus, Nov 07 2013
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = n! / A248762(n) = n! / A248763(n)^3.
log(a(n)) = log(3) * n + o(n) (Jakimczuk, 2017). (End)
MATHEMATICA
CubefreePart[n_Integer?Positive] := Times @@ Power @@@ ({#[[1]], Mod[ #[[2]], 3]} & /@ FactorInteger[n]); Table[CubefreePart[n! ], {n, 1, 40}]
PROG
(Python)
from operator import mul
from functools import reduce
from sympy import factorint
import math
def A145642(n):
return 1 if n <=1 else reduce(mul, [p**(e % 3) for p, e in factorint(math.factorial(n)).items()])
# Chai Wah Wu, Feb 04 2015
(PARI) a(n) = my(f=factor(n!)); f[, 2] = apply(x->(x % 3), f[, 2]); factorback(f); \\ Michel Marcus, Jan 06 2019
CROSSREFS
Cf. A000142 (n!), A050985 (cubefree part), A248762, A248763.
CF. A055204 (squarefree part of n!).
Sequence in context: A302033 A337643 A071301 * A056195 A083169 A276817
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 15 2008
STATUS
approved